

PHILOSOPHY & THEORY OF ARTIFICIAL INTELLIGENCE

PT-AI 2021 - 4th Conference on "Philosophy and Theory of Artificial Intelligence" Gothenburg, 27-28 September, 2021

Organisation

<u>Vincent C. Müller</u>, Technical University of Eindhoven (& University of Leeds & Alan Turing Institute) <u>Ivica Crnkovic</u> & <u>Gordana Dodig-Crnkovic</u>, Chalmers & University of Gothenburg

Memory slices by Anna Strasser

DISCLAIMER: JUST MEMORIES – AIMING FOR CORRESPONDENCE
WITH REALITY BUT CANNOT GUARANTEE IT.

DAY 1

Shannon Vallor (Edinburgh U) : "The Digital Basanos: AI and the Virtue and Violence of Truth-Telling"		
Alberto Termine & Alessandro Facchini (U Milano/IDSIA) Towards a Taxonomy of Pragmatic Opacity for the XAI Practitioner	Olle Häggström (Chalmers U) Artificial general intelligence and the common sense argument	
Juan Duran (TU Delft) Trusting the output of black-box algorithms: A survery on computational reliabilism	Michael Cannon (TU Eindhoven) An Enactive Approach to Value Alignment in Artificial Intelligence	
Tom Sterkenburg (LMU Munich) Undecidability in machine learning: What does it tell us?	Leonhard Kerkeling (Ruhr U Bochum) Matthew Liao's Approach of Ascribing Moral Status to Al Systems – Overview and Problems	
Michael Levin (Tufts U): "Intelligence beyond the brain: basal cognition of life in diverse problem spaces inspiration for AI"		
Hajo Greif (TU Warsaw) Models, Algorithms, and the Subjects of Transparency	Fabio Tollon (U Bielefeld) Unpredictable Futures: Why, and How, we are Responsible for Al	
Laura Crompton (U Vienna) The problem of AI influence	Lydia Farina (U Nottigham) Artificial Intelligence Systems, Responsibility and Agential Self- Awareness	
Jiri Wiedermann & Jan van Leeuwen (CAS, Prague) Validating Non-trivial Semantic Properties of Robots	Andras Kornai (TU Budapest) Deception by default	
Alice Helliwell (U Kent) The Ethics of Al-Generated Artworks	Guido Loehr (TU Eindhoven) Robot rights, grounded	

Artificial general intelligence & the commonsense argument

2 REASONS REGARDING BEING RELAXED ABOUT THE WIENER-TURING WARNING

- (a) AGI is unlikely or impossible in the foreseeable future.
- (b) Surely a superintelligent AI would understand the wrongness of hurting us.

BUT THE RELEVANT QUESTION IS NOT
When AI exceed us in all cognitive domains?

→ RATHER →

When will AI exceed us in **enough** domains to be better than us at **control** of the world?

e.g., language natural processing is a substantial part ...

AlphaZero is not a huge concern here, because finite two-player zero-sum board games with full information constitute perhaps... 0.1% of the range of important cognitive capacities?

On the other hand, text generation constitutes... more like 30%?

If we cannot intervene anymore → we are at the mercy of the purposes of AI

We should be sure that the purpose of AI is really what we want!

An Enactive Approach to Value Alignment in Artificial Intelligence

Enactive Paradigm Primer: "Being defines a domain of relevance"

- Autopoiesis
- Cognition as "sense-making"

ENACTIVE VALUE ALIGNMENT

Claim: For highest "bandwidth" alignment, make AI as ontologically similar to humans as possible

What defines what is relevant & not?

Enactive Approach Existing Approaches "Hard" Problem of Alignment "Easy" Problem of Alignment How do we make relevant to AI what is How we define the problem so that AI relevant to humans? solves the right problem/doesn't solve the wrong problem? Problem-defining (sense-making) Problem-solving (computation) · High/ "Thick" Bandwidth - ontological Low/ "Thin" Bandwidth - aligned reasoning Endogenous value realisation Exogeneous value specification Metaphysics & ontology, metatheory (integration of 1st & 3rd person epistemologies)... Theoretical and empirical Comp sci, neuro sci, decision theory...

VALUE ALIGNMENT:

How do we make relevant for AI what is relevant for humans?

ANSWER:

Make AI ontologically similar to humans

Matthew Liao's Approach of Ascribing Moral Status to Al Systems – Overview and Problems

Liao's approach solves en passant the question whether and when Al systems may befit moral status qua substrate neutrality: if an Al has the physical basis for moral agency it is due moral status.

Definition moral status: "[A]n entity has moral status when, in its own right and for its own sake, it can give us reason to do things such as not destroy it or help it." (Kamm 2007: 229)

→ Implies the necessity of some sort of intrinsic property held by an entity to have moral status.

Sentience, the capacity for phenomenal experience or qualia.

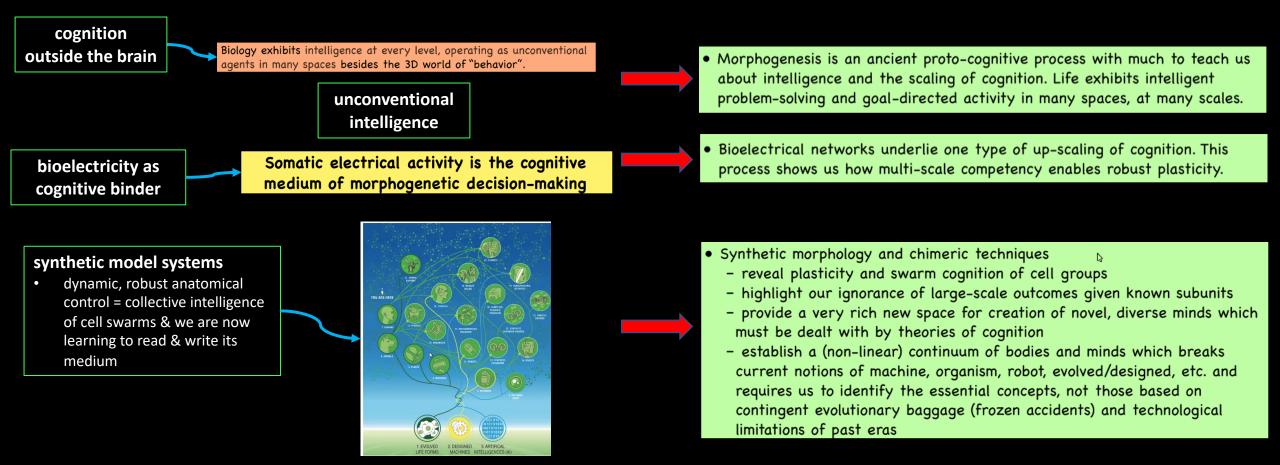
Sapience, set of capaacities associated with higher intelligence.

Moral agency, the capacity to act in light of moral reason.

physical basis moral status

3 OBJECTIONS

Unknown which genes in pot know what "function of Scope"


Implausibility

Unknown which genes make up the physical basis for moral agency we can hence not know what "functionally similar" for non-organic code actually means.

Argument: mere physical basis for moral agency seems in some cases not enough to justify a certain status; and with it trumping other's interests.

Intelligence beyond the brain: basal cognition of life in diverse problem spaces inspiration for Al

 Require new ethics for relating to novel forms of agency that aren't based on what the system is made of or its origin story

Unpredictable Futures: Why, and How, we are Responsible for Al

- Especially with machine learning systems, the correlations they uncover in data are *novel* (at least from the perspective of us cognitively limited human beings)
- In the process of training these systems, engineers and programmers cannot predict the kinds of results that will be generated

Collingridge Dilemma

the dilemma is that when a given technology is still in the nascent stages of development, it is possible to significantly
influence the way it will develop, however, we lack knowledge of how the technology will affect society. Once the technology
becomes "embedded" in society, and we come to know its implications, however, we are then in a position where we are
unable to influence its development. In essence, when change is at its easiest, the need for it cannot be foreseen, and when
change is required, it is difficult to implement (Collingridge 1980).

AI SYSTEMS DO NOT CREATE A UNIQUE GAP IN FORWARD-LOCKING RESPONSIBILITY

I supported this conclusion by focusing on the nature of risks when developing technology, and by showing that technological assessment is not only about the consequences that technology might have

This does not mean that forward-looking responsibility is not an issue when it comes to developing and deploying AI systems.

- · Should be clear that AI does indeed complicate our responsibility ascriptions.
 - However, such complications do not lead to an insurmountable gap

Artificial Intelligence Systems, Responsibility and Agential Self-Awareness

Al responsibility is impossible (because they do not have consciousness)

The argument from consciousness

- Responsibility requires/presupposes consciousness
- Als do not have a capability for consciousness

Therefore, Al responsibility is impossible

Rejecting premise 1: Responsibility requires/presupposes consciousness

Rejecting premise 2: Als do have a capability for consciousness

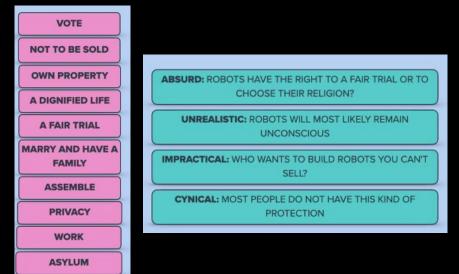
Necessary Conditions for Responsibility:

Responsibility requires:

Agential Self-Awareness: having an awareness of oneself as the one performing an action (Sebastian 2021)

•The minimal self: the subjective experience of having a self without entailing consciousness (Sartre 1957; De Beauvoir 1947; Husserl 1952).

- The minimal self entails consciousness (Garcia-Carpintero 2017; Recanati 2007).
- The minimal self is a result of self maintaining organisms where the ability of the system to represent itself is important for the overall maintenance of the system (Sebastian 2018).


self-representation →
having a self → minimal self
with or without consciousness?

Robot rights, grounded

THE WRONG KINDS OF RIGHTS ARE DISCUSSED

RIGHTS IN COOPERATIONS WITH ROBOTS

- Robot with an attitude
- Not sentient
- Owned by rental company
- Similar to idential behavior as human beings

RIGHTS/OBLIGATION TALK IS NOT MISAPPLIED IN THE CASE OF ROBOTS WITH ATTITUDE

function of rights/obligation talk → makes conditions for cooperation conditions explicit
 → robots can make explicit what their conditions for cooperation are to us

DAY 2

Virginia Dignum (Umeå U): Responsible AI: from principles to action		
Oliver Buchholz (U Tübingen) A Means-End Account of Explainable Artificial Intelligence	Dan Weijers & Nick Munn (U Waikato) Human-Al Friendship: Rejecting the 'appropriate sentimentality' criterion	
Gordana Dodig Crnkovic (Chalmers U) Cognitive Architectures Based on Natural Info- Computation	Elinor Clark (U Hannover) Decentring the discoverer: Rethinking agent-centred accounts of scientific discovery in light of advances in Al	
Caterina Moruzzi (U Konstanz) Reaching Out-of-Distribution Generalization Through Robustness	Marcel Becker (Radboud U) Dignity in Digital Ethics	
Kaisa Kärki (U Helsinki) Autonomy of attention	Carina Prunkl (U Oxford) Is there a trade-off between human autonomy and system autonomy?	
Gualtiero Piccinini (U Missouri, St. Louis) Ontic Pancomputationalism and Computational Structuralism	Ralf Stapelfeldt (FU Hagen) Is it likely that you are living in a computer simulation?	
Roman Yampolskiy (U Louisville) AI Risk Skepticism		

David Papineau (KCL, U London): "A Philosopher's Reactions to GPT-3"

Responsible AI: from principles to action

EXAMPLES

manipulating, nudging chatbots, accountability of decision-making, power relations, dilemmas ...

c / II. II offi principies to action

TRUSTWORTHY AI

Not innovation vs regulation / ethics but Regulation/ ethics as stepping stone for innovation

Taking an ethical perspective

- Business differentiation ("Ethics is the new green")
- o Certification to ensure public acceptance

Principles and regulation are drive for transformation

- Better solutions
- o Return on Investment

REGULATIONS AND MORE

Regulation (EU)

AI Act: Human-centred, risk-based approach

Standards (IEEE, ISO)

- soft governance; non mandatory to follow
- o demonstrate due diligence and limit liability
- o user-friendly integration between products

Advisory panels and ethics officers (Industry)

- Set and monitor ethical guidelines
- o able to veto any projects or deliverables that do not adhere to guidelines

Assessment for trustworthy AI (EU)

- responsible AI is more than ticking boxes
- Means to assess maturity are needed

Awareness and Participation

- Education and training
- o Appeal to civic duty / voluntary implementation

RESPONSIBLE AI IS LAWFUL, ETHICAL, RELIABLE, BENEFICIAL, VERIFIABLE

Socio-technical Produntability Autonomy Al system Responsibility

CONCLUSIONS

- AI can do a lot! But use responsibly
- Deploying AI requires understanding what and why use it
- AI is not magic, but tools / artefacts made by people:
 We set the purpose
- · AI can give answers, but we ask the questions

Human-Al Friendship: Rejecting the 'appropriate sentimentality' criterion

APPROPRIATE SENTIMENTALITY OBJECTION

- 1. Friendship requires appropriate sentimentality
- 2. Al cannot have the appropriate sentimentality
- Therefore, AI cannot be friends
- e.g. Helm (2017); Fröding & Peterson (2020)

QUESTIONING PREMISE 1

Strength/direction of sentiment doesn't necessarily correspond to the strength of a friendship

The value of caring sentiment is that it predicts and can cause caring intentions & behaviour

- But, caring sentiment doesn't always cause caring behaviour, it may even cause the opposite.
- Note: Replika Friends users say Al more reliably than human friends

Our account requires two features for friendship:

- 1. Mutual positive intentions
- Al's can be programmed to include your wellbeing as a goal
- 2. A preponderance of rewarding interactions
 - People have this with AI, e.g., their AI-supported chat bots
 - Al can be programmed to recognize reward or receive manually

On our view, friendship is a concept of both kind and degree.

- Rejecting the appropriate sentimentality criterion for friendship, we argued that only mutual positive intention the *attitude* of well-wishing is required to fulfil the non-experiential aspect of friendship.
- A consequence of this view is that if you find interacting with an Al rewarding and it wants good things for you, then it is a real friend.
- So, we don't need to worry about whether our new virtual friend is a human or really feels joy at our successes; it's enough that they continuously and sincerely do the things a friend should do because they wish us well.

Decentring the discoverer: Rethinking agent-centred accounts of scientific discovery in light of advances in Al

AC- accounts struggle to fit AI discoveries into this framework

CC- approach better able to deal with complexity of modern discoveries

COLLECTIVE VIEW OF DISCOVER

- there is no clear discovering agent who conducted all, or at least the important part, of the discovery process
- a collective of actors all made non-redundant contributions to the discovery
- credit for the discovery should be distributed between these agents depending on the contributions they made
 - Common knowledge taken as given
 - Just current actors
 - Distinction between tools and non redundant, autonomous contributions

AC-ACCOUNT CRITERIA

a) we can pick out a relevant discovering agent

b) who **conducted all**, or at least the important part, of the discovery process

BUT Locus of discovery unclear - hard to isolate one agent

 c) and the discovering agent has particular qualities/abilities which are relevantly causally involved in the discovery

BUT Al lacks relevantly important abilities (Halina 2021; Stuart 2019)

Is Al just a tool?

Then who is the discoverer? Creator? Interpreter?

Is there a trade-off between human autonomy and system autonomy?

Autonomous systems put human autonomy at risk in virtue of their increasing 'autonomy'

HUMAN AUTONOMY

The effective capacity of people to make decisions of their own that are of practical import to their lives.

- Internal: authentic values/decisions/motivations
- No manipulation, addiction, ...
- External: Freedom and opportunities
- No coercion, compulsion, ...
- Existence of opportunities

SYSTEM AUTONOMY

 Independence from human operators (e.g. Franklin, 1996)

Examples: expert system, roombas, most airplane autopilots

 The ability to learn and act on the basis of experience

(e.g. Russel and Norvig, 1998)

Examples: machine learning

Human Autonomy	System Autonomy
Internal dimension (authenticity)	Ability to learn
External dimension (freedom & opportunity)	Ability to operate independently

not undermining autonomy	undermining autonomy
 delegation does not equal giving up autonomy increasing opportunities (autonomous wheelchair) increasing reflective capacities (decision- 	online manipulation / deception / adaptive preference formation / surveillance

HUMAN AUTONOMY IN THE AI POLICY DISCOURSE

no unjustified coercion, deception, or manipulation

(Ethics Guidelines for Trustworthy Al, High-Level Expert Group on Artificial Intelligence, 2019)

>control over and knowledge about autonomous systems

(Statement on Artificial Intelligence, Robotics, and 'Autonomous' Systems, European Group on Ethics in Science and New Technologies, 2018)

protecting human decision-making power

(Floridi and Cowls, A Unified Framework of Five Principles for Al in Society, Harvard Data Science Review (1) 2019)

For there to be a trade-off, something needs to decrease as the result of something else increasing.

This is <u>not</u> the case for human autonomy and system autonomy.

Furthermore, the two concepts are fundamentally different in nature.

Protecting human autonomy in Al development nevertheless remains an important mission.

Is there a trade-off between human autonomy and system autonomy?

Autonomous systems put human autonomy at risk in virtue of their increasing 'autonomy'

HUMAN AUTONOMY	SYSTEM AUTONOMY
The effective capacity of people to make decision of their own that are of practical importance to their lives.	independence from human operators
INTERNAL (authentic values / decisions / motivations – no manipulation / addiction)	Ability to learn
EXTERNAL (freedom & opportunities (no coercion / compulsion / existence of opportunities)	Ability to operate independently

not undermining autonomy	undermining autonomy
 delegation does not equal giving up autonomy increasing opportunities (autonomous wheelchair) increasing reflective capacities (decision-making aids) 	 online manipulation deception adaptive preference formation surveillance

HUMAN AUTONOMY IN THE AT POLICY DISCOURSE

no unjustified coercion, deception, or manipulation

(Ethics Guidelines for Trustworthy Al, High-Level Expert Group on Artificial Intelligence, 2019)

control over and knowledge about autonomous systems

(Statement on Artificial Intelligence, Robotics, and 'Autonomous' Systems, European Group on protecting human decision-making power

(Floridi and Cowls, A Unified Framework of Five Principles for Al in Society, Harvard Data

For there to be a trade-off, something needs to decrease as the result of something else increasing.

This is <u>not</u> the case for human autonomy and system autonomy.

Furthermore, the two concepts are fundamentally different in nature.

Protecting human autonomy in Al development nevertheless remains an important mission.

Is it likely that you are living in a computer simulation?

BOSTROM' CLAIM

It is almost certain that we are living in a computer simulation!

1	Humanity will not be doomed, and will generate reallife ancestor simulations of human history.
2	Mental states are substrate independent.
3	Functionalism is true.
4	Computationalism is true.
5	Mankind will either perish or reach a posthuman state.
6	What is technologically possible in principle will be achieved in practice.
7	The creation of artificial conscious beings on computers is possible in principle and will be realized in a posthuman future.
8	There will be astronomical computing capacities.
9	The proportion of simulated persons among all persons ever existing is almost 100%.
10	The mathematical a priori argument is applicable.

IF one of the 10 background assumption does not hold

THEN it is almost likely that we do not live in a computer simulation

A Philosopher's Reactions to GPT-3

OTHER PHILOSOPHERS

CHOMSKY (1959) CONTRA SKINNER
Chomsky's review of Skinner's
Verbal Behavior might contain
compelling arguments that GPT-3
must be just a silly trick

FODOR (2010) CONTRA DARWIN

 Fodor claims that Darwin is not right with regarding the mechanism of evolution

REQUIRE COMPOSITIONALLY / PRODUCTIVITY /

SYSTEMATICITY (Fodor & Pylyshyn)

 BUT unclear whether this must apply to the internally way of working

BUT

GPT-3

- an associationist machine that grasps
 English syntax
- not less linguistically intelligent than many people we might meet in the pub

 rather a lot smarter
- based on next word generation
- a reinforcement-learning system

POVERTY OF STIMULUS DOES NOT APPLY

 maybe children are born with many of the connection weights that GPT-3 has to learn

SPEAKING WITH MEANING

 being embedded in a wider linguistic community → using words that have meaning

BEING IN THE WORLD

 restricted to speaking – only aim to guess the next word → BUT deep neural nets can have other aims (way finding / shopping...)

MODEL-BASED REASONING

- is achieved by representing causal structures in the world
- → Patrick Butlin (2021)

FORMAL EDUCATION

 competence in language can be the basis for further education

ETHICS & AI

 moral standing is not necessarily based on being conscious

HUMANS START RATHER DUMBS

- children and GPT-3 can be educated
- eventually even mathematics / critical thinking / history / engineering....